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a b s t r a c t

With the purpose of estimating the lycopene concentration in tomato food samples, in an non-destructive
way, several types of linear models of color parameters have been tested using individual values of L*,
a* and b* values, (a*/b*), (a * 2/b * 2) and chroma parameters from tomato juice and fresh tomato fruits
obtained with two different apparatus (Minolta CR-200b triestimulus colorimeter and HunterLab LabScan
XE). Lycopene concentrations of fresh tomato and tomato juice (used as an input) were analyzed by
UV–Vis spectroscopy. For all linear methods applied, the best one to estimate the lycopene concentration
in tomato was the L*, a* and b* values of tomato juice measured with Hunter colorimeters (adjusted
correlation coefficient, R2

a > 0.86 and mean prediction error, MPE < 6.59%). Four different RBEF models
were designed firstly using three color parameters (L*, a* and b*) designated as “Lab case”, and secondly
individually by the (a*/b*), (a * 2/b * 2) and chroma parameters. The lycopene concentration estimations

2
. lycopersicum were carried out with the lowest MPE and highest Ra values possible. In order to test the reliability of
the non-linear models, external validation process was also performed. From the testing of the all non-
linear models applied, the RBEF Lab case model was the best to estimate lycopene content from color
parameters (L*, a* and b*) using Minolta or Hunter equipments (MPE lower than 0.009 and R2

a higher
than 0.997). This was a simple non-destructive method for predicting lycopene concentration in tomato
fruits and tomato juice, which was reproducible and accurate enough to substitute chemical extraction

be a
determinations, and may

. Introduction

Tomato fruit color measurement is frequently used in the
omato industry to predict the color of finished tomato products,
hich is an important quality index and determines the maturity

nd tomato post harvest life [1]. Color or pigment changes during
omato ripening are characterized by a decrease in chlorophyll and
rapid accumulation of carotenoids, particularly lycopene which

s the predominant pigment in tomato and imparts the attractive
edness [2].

Instrumental color measurements provide an objective, non-
estructive and rapid technique that enables the analyst to obtain

series of parameters in a few seconds, and it is an useful tool for

ood quality control [3,4]. Fruit chromaticity can be evaluated by the
olor space coordinates L* (degree of lightness, value), a* (a mea-
ure of the degree of redness or greenness) and b* (a measure of the

∗ Corresponding author. Tel.: +34 913941808; fax: +34 913941799.
E-mail address: mcamara@farm.ucm.es (M. Cámara).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.08.020
useful tool for tomato industry.
© 2010 Elsevier B.V. All rights reserved.

degree of yellowness or blueness). From these parameters, (a*/b*),
(a * 2/b * 2) and chroma ((a*)2 + (b*)2)0.5 values can be calculated to
characterize the three dimensionally of colors.

The processing tomato industry is also interested in the mea-
surement of lycopene as it is considered as an important bio-active
compound or an nutraceutical ingredient [5,6]. It has a high antiox-
idant activity with likely involvement in the prevention of certain
types of cancer and a broad range of degenerative diseases [7–11].
With an increased consumer demand on food products with health
benefits [12], scientists and the industry are focused on developing
food and nutritional supplements enriched in lycopene from natu-
ral resources. A rapid method for lycopene quantification in fruits
and vegetables and their products is required [13].

The main problem in measuring lycopene concentrations is its
insolubility in aqueous solution. Lycopene concentration in tomato

can be determined accurately by spectrophotometry and HPLC
analysis after extraction in organic solvents [14–16]. However, this
procedure is time-consuming and destructive.

Considering all the inconveniences of analytical determination
of lycopene some studies have been focused on developing non-
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estructive methods for lycopene quantification using the linear
orrelation of color measurements to predict lycopene content of
omato obtaining correlation coefficients (R2) equal to 0.83 and 0.96
n tomato fruits [2,17]. Other authors use color absorbance method
or lycopene assay of tomato puree obtaining a R2 = 0.96 [18,19].
owever, these lab methods are not portable for field applications.
hourdhary et al. [20] proposed chemometric models for rapid
uantification of lycopene content in tomato puree (R2 = 0.62) and
atermelon (R2 = 0.90) by a fiber optic reflectance spectroscopy.

Considering the interest on lycopene research and the incon-
eniences of chemical and destructive assays, the objective of this
tudy was to perform a radial basis network analysis of color instru-
ental parameters in order to estimate lycopene content in tomato

ood samples, in a non-destructive way, economical, fast and accu-
ate enough to be used for tomato industry for quality control.

. Materials and methods

.1. Samples

Six batches of fresh tomato fruit from Lycopersicon esculentum
ere purchased from local markets in Davis, CA. Sample treatments

o obtain tomato juice from fresh tomato was as follows: whole
omatoes were cut in halves face down (1.300 g) and microwaved.
fterwards, water was added to regain the original sample weight.
omato juice was obtained from an industrial blender and the juice
egassed to remove air. Samples of each batch were immediately
nalyzed for color and lycopene content.

.2. Color measurement

Two different equipments were used for the evaluation of color
n samples considered for study, Minolta CR-200b portable tri-
stimulus colorimeter consisting on a head with an 8′′ diameter
easuring area and a diffuse illumination/0◦ viewing and Hunter-

ab LabScan XE (Hunter Associates, USA) with a view area of 0.25′′

nd a size port of 0.40′′ and 2◦ Standard Observer was used for
easurements. The illuminant used for the color study was CIE

lluminant C [21]. Both colorimeters were calibrated with a white,
lack and red standard tiles. L*, a* and b* values, (a*/b*), (a * 2/b * 2)
nd chroma value ((a*)2 + (b*)2)0.5 were calculated to characterize
he viewing colors three dimensionally.

For the fresh tomato samples, two color measurements were
aken in opposite positions on the surface of each fruit, taking care
o avoid areas with stripes. In each case, the final color score of each
ample was obtained by mean of three replicates.

.3. Chemical analysis in tomato

Determination of soluble solids at 20 ◦C was performed by a
irect measurement of refraction index, expressed as the percent-
ge of sucrose at 20 ◦C [22]. Samples showed Brix values ranging
etween 4.2 and 5.3, which means similar maturity index in all
ruits from each batch to avoid differences in color due to the ripen-
ng stage.

Lycopene extractions were carried out immediately after pro-
essing the tomatoes into juice, using organic solvents in darkness
o prevent light-induced oxidation. Samples were extracted in
mixture of hexane/acetone/ethanol (50/25/25). After 30 min in

agnetic stirring, 10 mL of water was added and the upper hex-

ne layer was separated for spectrophotometric analysis at 446 and
02 nm, according to Olives Barba et al. [15]. Every sample was pre-
ared in triplicate, and then, each one was monitored also three
imes.
Fig. 1. Scheme of calculation of radial basis network (�,bias node).

2.4. Linear models

Linear and multiple linear regressions are the most widely used
and known modelling method. It has been adapted to a broad range
of situations. In a multivariate case, when there is more than one
independent variable, the regression line cannot be visualized in
a two dimensions space. In this case, a linear equation similar to
those used here, containing all required independent variables

y = ˛0 +
n∑

i=1

˛ixi + ε (1)

where y represents the response variable or dependent variable
(lycopene concentration), n the number of observations, ˛i (˛0,
˛1,. . ., ˛n) of the model, xi (i = 1, 2,. . ., n) the independent variables
(L*, a* and b*), (a*/b*), (a * 2/b * 2) and chroma value, and ε random
error [23,24].

2.5. Radial basis network model

The radial basis model (RBN) consists of three layers: the input,
hidden radial basis, and output linear, Fig. 1. The input layer has no
calculation power and serves as an input distributor to the hidden
radial basis layer. The input to the hidden radial basis neuron is the
vector distance between its weight vector (self-adjustable param-
eter of the net, w), and the input vector, p, multiplied by the bias.
The transfer function of radial basis neurons is a Gaussian func-
tion, Eq. (2). The radial basis function has a maximum of 1 when its
input is 0. As the distance between w and p decreases, the output
increases. The bias allows the sensitivity of the radial basis neu-
ron to be adjusted. The operation of the output layer is a linear
combination of the radial basis units according to Eq. (3) [25]

Gj(x) = 1

ex2
(2)

nh∑

yk(x) =

j

wjk · Gj(x) + wk (3)

In Eqs. (2) and (3), yk is the kth output unit for the input vector
x, nh is the number of hidden radial basis units, wjk is the weight
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etween the jth hidden and the kth output neurons, Gj is the nota-
ion for the output of the jth radial basis unit, and wk is the weight
f bias.

The network used here was a radial basis networks exact fit
RBEF). The algorithm very quickly designs a radial basis network
ith zero error on the design vectors, i.e. in this model the perfor-
ance error is equal to zero. It depends on a matrix of input vectors,
matrix of target class vectors and a spread of radial basis functions

spread constant). The RBEF algorithm returns a new exact radial
asis network.

As the spread constant (SC) is the only parameter of the RBEF
hich can be optimized, it was optimized by testing different

pread constant values between 0.001 and 15 [25]. The response
ariables were the mean prediction error (MPE, %), Eq. (4), and
djusted correlation coefficient (predicted vs. experimental values,
2
a).

PE = 1
N

∑

n

∣∣yn − yest
n

∣∣
yn

× 100 (4)

here N, yn, and yest
n , are the number of observations, lycopene con-

entration value and RBEF model estimation, respectively. The RBN
odel designed was developed taking into account that lycopene

oncentration estimations should be carried out with the lowest
PE and highest R2

a values possible.
Every RBEF model used in this work was designed using Matlab

ersion 7.01.24704 (R14). The statistical analyses were carried out
y Statgraphics Plus version 5.1.

.5.1. Learning, verification and validation samples
The color characteristics of juice (J) and fresh fruit (F) of toma-

oes measured by Minolta (M) and Hunter (H) instruments have
een distributed in four databases, (JM, FM, JH and FH) consisting

n seven columns (L*, a*, b*, (a*/b*), (a * 2/b * 2) and chroma and their
espective lycopene concentration, vide supra). These databases
ave been used to design linear models.

To optimize and verify the non-linear models, these databases
JM, FM, JH and FH) have been divided in two groups viz. learning
nd verification. The first one contained 80% used in the learn-
ng process and the remaining 20% of the whole data to verify the
erformance of the RBEF models.

An external validation of two non-linear models (FM and FH
atabases), was performed using a set of data from tomato fruits
aken from literature, including L*, a* and b*, color parameters
Minolta) as an input, and lycopene content by HPLC as an output
17].

. Results and discussion

.1. Multiple linear regression models

To estimate the lycopene concentration, four types of linear
odels have been tested, using individual values of L*, a* and b*

alues from tomato juice and fresh tomato fruits measured with
wo different apparatus (Minolta CR-200b triestimulus colorimeter
nd HunterLab LabScan XE, vide supra). Lycopene concentrations
f fresh tomato and tomato juice were evaluated by UV–Vis spec-
roscopy. In the light of MPE (Eq. (4)) and adjusted correlation
oefficient values (real vs. estimated concentration), the best model
as achieved measuring L*, a* and b* values in tomato juice sam-
les by Hunter equipment (R2

a > 0.86 and MPE < 6.59%), Table 1.

he UV–Vis lycopene concentrations and their linear estimations
re shown in Fig. 2.

For a better estimation of lycopene content, twelve linear
egression models have also been proposed. These models were
esigned using individually (a*/b*), (a * 2/b * 2) and chroma param-
Fig. 2. UV–Vis measured concentration of lycopene vs. its linear estimations. (a)
Juice; (b) fresh fruit. (×, Hunter and �, Minolta).

eters (Minolta and Hunter), Table 2. The UV–Vis concentration
and their linear estimations are shown in Fig. 2. In the light of
MPE (Eq. (4)) and adjusted correlation coefficient values (real vs.
estimated concentration), the best results are achieved in tomato
juice samples evaluated by Minolta or Hunter apparatus (R2

a > 0.66
and MPE < 10.38% and R2

a > 0.66 and MPE < 10.94%, respectively),
Table 2.

For all linear methods applied, the best one to estimate the
lycopene concentration in tomato juice consists on using L*, a* and
b* values measured with the Hunter (R2

a > 0.86 and MPE < 6.59%).
Nevertheless, there was not an outstanding linear mathematical
correlation between lycopene content and the color values. There-
fore, to find more reliable estimations of lycopene concentration,
the models could be improved using non-linear algorithms as RBEF
models.

3.2. Non-linear models

Following the same procedure as in the linear model designs,
four different RBEF models were designed to estimate the lycopene
concentration, firstly using three color values (L*, a* and b*) des-
ignated as “Lab case”, and secondly individually by the (a*/b*),
(a * 2/b * 2) and chroma parameters. As the number of input nodes
and output neurons are fixed by the requirements of the system
to be modelled, in all cases there was an output neuron (lycopene
content) and the number of input neurons varied depending on the
required information, that is, three nodes in the first (Lab case), and
one node in the other three RBEF models designed. The hidden neu-
rons number was optimized by the radial basis network itself (vide
supra) [25].

In the RBEF models optimization, every spread constant value
was optimized following the aforementioned method. The design

was analyzed taking into account that the estimations should be
carried out with the lowest MPE and highest R2

a values possible.
In every RBEF models, the optimized spread constant was equal to
unity.
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Table 1
Parameters of linear models and their statistical results of UV-Vis lycopene concentration (mg kg−1) versus those estimated by multiple linear regression models#.

Sample Equipment ˛0
§ ˛L

§ ˛a
§ ˛b

§ R2
a

¥ MPE (%)*

Tomato fruit Minolta 368.769 −8.934 3.756 −1.233 0.839 9.731
Hunter 26.664 1.862 1.619 −5.550 0.707 9.711

Tomato juice Minolta 64.537 −5.296 14.068 0.602 0.804 7.989
Hunter 30.737 −2.212 4.208 1.412 0.863 6.585

# [Lycopene] = ˛0 + ˛L L+ ˛a a*+ ˛b b*.
§ mg kg−1.
¥ Adjusted correlation coefficient.
* Eq. (4).

Table 2
Parameters of multiple linear regression models# used to estimate the lycopene concentration using (a*/b*), (a*2/b*2) and chroma and their respective statistical results.

Sample Equipment ˛0
§ ˛(a*/b*)

§ ˛(a*2/b*2)
§ ˛chroma

§ R2
a

¥ MPE (%)*

Tomato fruit Minolta 22.238 16.913 – – 0.201 18.678
33.913 – 5.931 – 0.214 18.814
35.940 – – 0.280 0.236 18.940

Hunter 14.609 16.907 – – 0.442 12.853
28.179 – 5.111 – 0.444 13.020
29.890 – – 0.516 0.060 17.057

Tomato juice Minolta −92.748 123.488 – – 0.144 13.853
−24.223 – 55.559 – 0.132 13.981
−109.068 – – 9.628 0.666 10.379

Hunter −6.619 37.575 – – 0.306 12.743
18.540 – 13.840 – 0.266 13.107
−7.186 – – 3.090 0.669 10.939

m
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w
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p

m
m
w
e
p

T
L
C

# [Lycopene] = ˛0 + ˛(a∗/b∗)(a ∗ /b∗)+˛(a∗2/b∗2)(a
∗2/b∗2)+ ˛chroma chroma.

§ mg kg−1.
¥ Adjusted correlation coefficient.
* Eq. (4).

In the lab case RBEF model, the lycopene concentration esti-
ated (using the verification sample) showed MPE lower than

.009 and R2
a higher than 0.997 when fresh tomato and tomato juice

ere measured by both Minolta and Hunter apparatus. In the light
f adjusted correlation coefficient and MPE values, all RBEF models
ere suitable to estimate the lycopene concentration.

Considering now individually the (a*/b*), (a * 2/b * 2) and chroma
arameters to perform the RBEF models, the optimized spread con-
tant values and statistical results calculated during the verification
rocesses of these three models are shown in Table 3.

In the R2
a terms, these models were comparable to the non-linear

odel proposed in the Lab case. But accounting MPE values, these

odels were worse than the aforementioned non-linear model,
ith the exception of Chroma model of tomato juice using Hunter

quipment (R2 > 0.999 and MPE < 0.002%). In any case, in com-
arison with linear models, the statistical results were improved

able 3
ycopene concentration estimations by RBEF models using (a*/b*), (a*2/b*2) and
hroma parameters using the verification sample.

Sample Input values Equipment Spread constant R2
a

¥ MPE (%)*

Tomato
fruit

(a*/b*) Minolta 0.01 0.996 1.349
Hunter 0.10 0.988 3.056

(a*2/b*2) Minolta 0.01 0.999 0.107
Hunter 0.01 0.999 0.411

Chroma Minolta 0.01 0.996 0.446
Hunter 0.01 0.995 0.155

Tomato
juice

(a*/b*) Minolta 0.11 0.992 0.393
Hunter 0.11 0.992 0.223

(a*2/b*2) Minolta 1.00 0.998 1.460
Hunter 0.10 0.991 1.941

Chroma Minolta 0.01 0.995 0.105
Hunter 0.01 0.999 0.002

¥ Adjusted correlation coefficient.
* Eq. (4).
notably. Thus the lycopene estimation was more reliable. This
improvement in the statistical results is expected because the com-
plex mathematical relation between color characteristics of foods
and its lycopene concentration can be considered as a non-linear
relation.

Linear models (y = a + b·x) are able to describe only linear
relations between dependent (y) and independent (x) variables.
Nevertheless, radial basis network models not only are capable to
describe non-linear relations between the aforementioned vari-
ables, but also given the number of calculation units (neurons),
where non-linear calculations are carried out, more complex math-
ematical relations can be adequately described. Because of this,
neural networks can describe more adequately complex mathe-
matical relations than linear models do. On the other hand, in
the case of non-linear models the number of parameters used to
describe the mathematical relation is higher than in the case of
linear model.

Given the statistical results obtained the non-linear models
were suitable to estimate the lycopene concentration by the fruit
color parameters of fresh tomatoes and tomato juice, obtained by
both instruments (Hunter and Minolta).

Once the RBEF models had been optimized, and in order to test
the reliability of the non-linear models, external validation process
was applied [26].

3.3. Validation of non-linear models

The non-linear models (FM and FH databases) were externally
validated using published lycopene concentrations of tomato fruits

analyzed by HPLC and their respective color parameters measured
both with Hunter and Minolta instruments [17]. This external val-
idation process consisted of comparing the estimation of lycopene
content calculated by RBEF models with the real concentration from
different samples taken from other source. The databases used in
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Table 4
External validation of RBEF models.

Tomato fruit HPLC* § Equipment Estimated (Lab case)§ Estimated (a*/b*)§ Estimated (a*2/b*2)§ Estimated (Chroma)§

Orange 34.06 Minolta 35.36 31.32 32.44 31.99
Hunter 35.73 39.3 38.73 39.3

Light red 49.50 Minolta 48.95 45.87 47.07 47.27
Hunter 47.59 45.55 46.59 47.18
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§ Lycopene content in mg kg−1).
* Arias et al. [17].

he learning, verification and validation must be comparable, i.e.,
hese should belong to the same applicability domain [25]. The
PLC lycopene values of tomato fruit [17] and estimated lycopene
oncentration obtained by the four RBEF models previously opti-
ized are shown in Table 4.
External validation applied confirmed our previous results, the

etter estimation of lycopene content in tomato fruit was obtained
y the RBEF Lab case model (using L*, a* and b* parameters) with

ndependence of the color equipment used.
To conclude, from all the non-linear models applied, the

BEF Lab case model was the best to estimate lycopene content
rom color parameters (L*, a* and b*) using Minolta or Hunter
quipments. This model is a simple non-destructive method for
redicting lycopene concentration in tomato fruits and tomato

uice, being reproducible and accurate enough to substitute chem-
cal assays, and may be a useful tool for tomato industry with the
nly requirement of software Matlab version 7.01.24704 (R14) or
imilar.
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